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Abstract
In this paper we present and evaluate an implementation of a Brill morphosyntactic
rule-based (Part of Speech) tagger adapted for specifics of inflectional languages
like Polish. To achieve this, we use an optimized version of Brill’s algorithm
on morphologically analysed data. Then we perform the tagging in two phases,
disambiguating part-of-speech, case and person at first, and other grammatical
categories in the second phase.

Performed experiments show the tagging error rate of 10.8%, which is still
worse than 9.6% error rate of the stochastic trigram tagger or 6.56% achieved
by other Polish rule-based tagger called TaKIPI, which were used for tagging the
largest morphosyntactically disambiguated Polish corpus. With such a high error
rate we believe that the Brill tagger is not feasible for standalone use, but may be
useful in hybrid setups.
Keywords: PoS tagger, Brill tagger, rule-based tagger, morphosyntactic analysis

1 Introduction

One of common problems in language processing is for each segment (usually a
single word) in a given text to determine the flexemic class (roughly part of speech)
and the values of several grammatical categories (e.g. number, case, etc.). This
process is called morphosyntactic tagging. Part of Speech tagging for English
is already well explored, however, few experiments are reported for inflectional
languages like Hungarian (Megyesi, 1999), Czech (Hajic, 1997) or Polish (Łukasz
Dębowski, 2004; Piasecki and Wardyński, 2006; Piasecki and Gaweł, 2005).

A tagger should assign a single tag to each segment in the text, at least where it
is unambiguous. A tag describes the flexemic class of the segment and the values of
matching grammatical categories. Possible tags for a particular language comprise
its tagset. Sometimes it is impossible even for a human to unambiguously assign
a tag to a segment, therefore real-world taggers can sometimes assign several tags
to a single segment.

Several tagging techniques are commonly known. The most frequently used
approaches are: stochastic, e.g. based on Hidden Markov Models (Jurafsky and
Martin, 2008) and rule-based. In a paper (Brill, 1992) the author presents a rule-
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Table 1: Example tags in Brown’s English Tagset and IPI PAN Polish tagset

English VBD verb, past tense

PPS pronoun, personal, nominative, 3rd
person singular

Polish praet:sg:m1:perf l-participle, singular, human masculine,
perfective aspect

ppron12:sg:nom:f:pri 1st person pronoun, singular, nomina-
tive, feminine

based Part of Speech tagger for English, which automatically chooses good quality
rules given a number of general rule templates and a training corpus.

In this paper we describe and evaluate an implementation of the Brill’s algo-
rithm, adapted for rich inflectional languages with large tagsets like Polish. Polish
is also a free word order language, what justifies the need for slightly expanding
the original set of rule templates proposed in the Brill’s original paper. This way
it is possible to generate rules, which look up larger contexts, a desired feature for
free word order languages. Brill uses Brown’s Tagset for English, which consists
of almost 200 tags (Brill, 1992), whereas IPI PAN Polish tagset (Przepiórkowski
and Woliński, 2003; Przepiórkowski, 2005), which we use, contains more than 1000
tags. Examples of tags are shown in Table 1.

The tagger used for morphosyntactic disambiguation of the current version of
the IPI PAN corpus (Przepiórkowski, 2004), called TaKIPI (Piasecki andWardyński,
2006), is also a hybrid (multiclassifier) rule-based tagger. Some of the rules it
uses were extracted automatically using sophisticated machine learning algorithms.
Brill’s approach is significantly simpler, though.

2 The original Brill tagger

Let us describe the original Brill’s algorithm in some details. We assume that
we are given three corpora — a large high-quality tagged training corpus, smaller
tagged corpus called patch corpus and another one — test corpus, which we want
to tag. Brill also assumes, that only one correct tag can be assigned to a segment.
Tagging is performed in four steps:

1. A simple unigram tagger1 is trained using the large training corpus.
2. Unigram tagger is used to tag the patch corpus.
3. There are certainly some errors in the tagging of the patch corpus. Therefore

we want to generate rules, which will correct as many errors as possible. A rule
consists of a predicate which specifies places where the rule should be applied
and an action in the form “change the tag to A if the tag is B” (as we can see,
and action may also contain a condition).

1Unigram tagger always assigns to a particular segment the most frequently seen tag for this
segment (in the training corpus)
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(a) We are given a small list of so called rule templates. Brill uses the following
templates in his paper:
i. change tag A to B if preceding (following) word has tag C,
ii. change tag A to B if word two before (after) has tag C,
iii. change tag A to B if one of the two preceding (following) words has

tag C,
iv. change tag A to B if one of the three preceding (following) words has

tag C,
v. change tag A to B if preceding word has tag C and following word has

tag D,
vi. change tag A to B if preceding word has tag C and word two before

has tag D,
vii. change tag A to B if following word has tag C and word two after has

tag D,
viii. change tag A to B if current (previous) word is capitalized.

(b) For each rule r, which can be generated using these templates, we compute
two statistics:
i. good(r) — number of places in the patch corpus, where the rule

matches and changes an incorrect tag into a correct one,
ii. bad(r) — number of places in the patch corpus, where the rule matches

and changes the tagging from correct to incorrect.
(c) Now we find rule rb, which maximizes good(r)− bad(r), i.e. reduces the

largest possible number of errors when applied. We save the rule and apply
it to the patch corpus. If the training corpus still contains many errors,
return to 3a.

4. The test corpus is first tagged using the unigram tagger, and then the saved
rules are applied in order.

If the test corpus was previously manually tagged, we can evaluate the performance
of the tagger.

3 Adaptation for inflectional languages

Starting with this basic approach described above, we gradually applied a number
of changes, as described in the following subsections.

3.1 Two-phase tagging

As mentioned in the introduction, Polish tagset is much bigger than English one.
Therefore, the space of possible rules is also much bigger, so computations are far
more time-consuming. Moreover, much more rules should be created to obtain
good results. We did not expect good results using our 880 000-words corpus in
which over 50% tags occur less than 100 times.

To solve this problem we considerably redesigned the process of tagging. At
first we split each tag into two parts, called P1-tag and P2-tag. P1-tag contains
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the flexemic class (roughly part of speech), case and person (where appropriate),
whereas P2-tag contains the flexemic class once again, and all the appropriate
grammatical categories except case and person i.e. number, gender, degree, as-
pect, negation, accentability, post-prepositionality, accommodability, aggultina-
tion, vocalicity. This way we obtained 97 P1-tags and 260 P2-tags. Piasecki and
Wardyński (2006) also uses a similar approach, but splits the tags into three parts.

Table 2 shows examples of split tags.

Table 2: Examples of tags split into two parts

Original tag P1-tag P2-tag

adj:sg:loc:f:pos adj:loc adj:sg:f:pos

fin:sg:ter:perf fin:ter fin:sg:perf

pact:sg:inst:f:imperf:aff pact:inst pact:sg:f:imperf:aff

ppas:pl:acc:f:imperf:aff ppas:acc ppas:pl:f:imperf:aff

subst:pl:nom:f subst:nom subst:pl:f

Now we use the following tagging algorithm:

1. Use the original Brill’s approach for P1-tags.
2. From now on we treat P1-tags as unchangeable, both in the patch corpus and

in the test corpus. We will only try to choose a best matching P2-tag for each
word.

3. Once again start by training an unigram tagger, so for each pair (word, P1-tag)
it assigns the most common P2-tag in the training corpus. If such a pair does
not occur in the training corpus, assign any P2-tag, with a flexemic class, which
matches the chosen P1-tag.

4. Tag the patch corpus using unigram tagger.
5. Using the patch corpus generate a set of good rules from given rule templates.

Here we use a different set of templates than for assigning P1-tags. The fol-
lowing templates are used:
(a) change P2-tag A to P2-tag B if the preceding (second before, following,

second after) word has P1-tag D

(b) change P2-tag A to P2-tag B if the preceding (second before, following,
second after) word has P1-tag D and P2-tag E

(c) change P2-tag A to P2-tag B if one of the two (three) preceding (following)
words has P1-tag D

(d) change P2-tag A to P2-tag B if one of the two (three) preceding (following)
words has P2-tag D

(e) change P2-tag A to P2-tag B if one of the two (three) preceding (following)
words has P1-tag D and P2-tag E

(f) similar rules as above, but only if the P1-tag of the current word is C
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Also we say, that a rule matches only if the P2-tag, which it tries to assign
to a segment, matches the already chosen P1-tag (namely the flexemic class is
the same).

6. We tag the test corpus using the unigram tagger for P2-tags and then apply
the generated rules.

3.2 Speeding up algorithm

The straightforward implementation of Brill’s algorithm is slow, especially when
dealing with large tagsets. Even after splitting each tag into two parts the rule
space is so large that using the original Brill’s algorithm is computationally un-
feasible.

Ramshaw and Marcus (1994), and later (Ngai and Florian, 2001), propose
computationally more efficient implementations of the original algorithm. We
implemented the presented FastTBL algorithm for our experiments. The main
differences between the original Brill’s approach and FastTBL are:

1. FastTBL considers only rules which matches in at least one place of the patch
corpus. This reduces the number of considered rules significantly.

2. FastTBL keeps values of good(r) and bad(r) for each rule r, and updates
them through subsequent iterations, instead of recomputing them.

According to Ngai and Florian (2001) using FastTBL makes tagging process
last over 300 times shorter than original Brill’s algorithm. What is more, both
algorithms give the same accuracy.

3.3 Morphological analyser for preprocessing

A common technique used for inflectional languages is to run a morphological anal-
yser on the patch and test corpora. This initially reduces the space of considered
tags for particular segments. For each segment in both the patch corpus and the
test corpus, the morphological analyser assigns a number of candidate tags (based
on its syntactic features only, not on the context).

For example, for word podejrzaną (a form of suspected) the morphological
analyser decides, that only four tags need to be considered: adj:sg:acc:f:pos,
adj:sg:inst:f:pos, ppas:sg:acc:f:perf:aff and ppas:sg:inst:f:perf:aff.

We use the information generated by the morphological analyser in the tagging
algorithm itself. Namely, we consider that a rule matches only if it changes the
tag of a segment to one of the possible tags assigned by the analyser. This way
we also reduce the number of considered rules in the FastTBL algorithm by over
an order of magnitude.

4 Experiments

For experiments we used the manually disambiguated fragment of the IPI PAN
corpus of Polish language (Przepiórkowski, 2004). Its size is over 880 000 segments.
For each segment, a set of possible tags is given with the corpus. Possible tags
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were chosen using the morphological analyser Morfeusz (Woliński, 2006) and then
correct tags were selected by hand by linguists.

After that we split the entire corpus into ten similar-sized parts. An experiment
was performed ten times — each time a different part was used as the test corpus,
and the other nine parts as both training and patch corpora. Reported values are
averaged across these ten runs.

We repeated this process and varied the threshold (Thr) parameter, which
describes the lowest accepted quality of chosen rules (the minimum accepted
good(r)−bad(r) value), after reaching which we stop producing rules. Lowering
threshold gives more rules, but also increases the time needed for computations.
The results of experiments are shown in Table 3.

Table 3: Testing corpus tagging results

Thr Time (s)
# rules

P (%) R (%) F (%) E (%) EP1 (%)
P1 P2

6 1584.70 727 473 89.46 83.55 86.40 10.79 7.97

10 1018.32 472 303 89.08 83.20 86.04 11.19 8.26

20 626.99 262 175 88.45 82.61 85.43 11.90 8.77

50 362.02 124 94 87.61 81.82 84.62 12.87 9.44

100 238.74 71 53 86.72 80.99 83.76 13.95 10.15

It is worth noticing that lowering threshold to a value less than 6 does not
result in significantly better tagging accuracies. We experimented with letting the
rule generator stop the generator at threshold 5, but no of the extra rules matched
the test corpus more than once, and most of the extra rules did not match at all.

Below, we describe the measures used for evaluation.

Time — the total run time, includes parsing of training corpus, training the uni-
gram tagger and the rule-based tagger, tagging the test corpus and producing
evaluation results. The experiments were run on a 2.66GHz Intel Xeon ma-
chine.

Precision (P ) — percent of tags (given by the morphological analyser) marked
by the tagger as correct which were also chosen by linguists as correct. Please
note that in our IPI PAN corpus for some segments several tags are marked
correct. Our tagger always assigns exactly one tag to a segment.

Recall (R) — percent of tags marked by linguists as correct which were marked
by the tagger as correct.

F-measure (F ) — F = 2PR
P+R — the measure commonly used in information

retrieval.
Error rate (E) — percent of incorrectly tagged segments. For segments with

multiple tags assigned by linguists, we arbitrarily choose one of them as correct,
and compare it with tagger’s choice.

Error rate of P1-tags (EP1) — percent of incorrectly determined P1-tags.
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The original Brill tagger for English reaches 4.5% error rate. The trigram
stochastic tagger (Łukasz Dębowski, 2004) used for tagging the first version of the
IPI PAN corpus of Polish reaches 9.6% error rate, so it is still significantly better
than our tagger, which reaches 10.8%. Even better results (6.56% error rate) are
reported for TaKIPI (Broda et al., 2008) — a hybrid rule-based tagger used for
tagging the current version of the mentioned corpus. For P1-tags only we get 8.0%
error rate. Megyesi (1999) reports 14% error rate for basic version of Brill tagger
for Hungarian, and improvements yield 8.1% (reaching even 5.5% for PoS only
tags, which are very similar to our P1-tags). It is worth mentioning that Megyesi
uses lexical rule templates, but no morphological analyser, for example

Change the most likely tag (from tag X) to Y if the current segment has
prefix/suffix x, |x| < 7.

Maybe adding rules similar to these would result in lower error rates for our tagger
too, however it may not be the case, as the morphological analyser already takes
into account the lexical structure of the current segment. Hajic (1997), who applies
the original Brill’s algorithm to Czech language, obtains 20.2% error rate, but he
does not use morphological analyser. A wide range of possible improvements
includes constructing hybrid taggers. Spoustová et al. (2007) compares a number
of hybrid approaches for Czech, obtaining up to 4.3% error rate.

In order to find the potential sources of errors, we analysed per-tag results of
P1 tagging. Any segments mistagged in P1 phase potentially strongly contributes
to the overall error score. Per-tag results are presented in Table 4.

Table 4: Error rates for most common P1-tags

Tag Count E (%)
interp 14697 0.00
subst:gen 8005 8.21
qub 6448 3.61
subst:nom 5795 21.74
conj 5487 3.79
subst:acc 4046 20.21
praet 3763 0.33
prep:loc 3182 2.29
adj:gen 3177 11.92
fin:ter 3120 1.43

Tag Count E (%)
adj:nom 3042 20.23
subst:loc 2894 4.69
prep:gen 2299 1.13
adj:acc 1745 26.20
prep:acc 1727 3.89
subst:inst 1721 3.66
ign 1456 0.97
adv:pos 1437 1.84
inf 1389 0.57
adj:loc 1259 9.96

As we can see from the table, the most problematic for our tagger was to
differentiate between subst:nom and subst:acc tags, as well as adj:nom and
adj:acc. In Polish these two cases frequently have the same orthographical form,
so they are not disambiguated by the morphological analyser, and also it is hard
to determine them correctly by looking only on the small context, which is used
by our rule templates. Hajic (1997) suggest joining these pairs of P1-tags into
single P1-tags. We could then use more fine-grained P2 rules for disambiguating
them. Another approach would be to design hand-made rules (or rule templates)
covering most common cases. See also Piasecki (2006).
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To get an insight into the type of rules actually generated during training,
Table 5 shows chosen rules together with their good(r) and bad(r) values.

Table 5: Sample P1 rules generated by the tagger

No. r good(r) bad(r)

1 Change prep:gen to prep:inst if any of the three
following segments has tag subst:inst.

4055 105

3 Change adj:gen to adj:loc if any of the two pre-
ceding segments has tag prep:loc.

3710 770

5 Change subst:gen to subst:loc if it is preceded by
prep:loc.

1814 13

60 Change adj:gen to subst:gen if it is preceded by
prep:gen and followed by interp.

143 19

70 Change num:nom to num:acc if any of the two pre-
ceding segments has tag qub.

246 114

After carefully looking at these rules, we can see that first three rules are simple
case matching rules. Sometimes a bit more sophisticated rules are found, e.g. the
fourth one, which really has some linguistic sense, but it is not a very obvious
rule. Unfortunately, as seen in the fifth example, sometimes the rules have no
justification in the Polish grammar.

5 Conclusions and further work

In this paper we presented results of one of the first attempts to implement a Brill
tagger for Polish language. Even though the obtained error rate of 10.8% is still
high, we believe that addressing weaknesses like

• problems with differentiating between nominative and accusative forms,
• not using lexical information in rule templates,
• using local-context rule templates for a language with free word order,

may lower the error rate by a few percentage points. We implemented the pre-
sented algorithms in such a way, that adding and modifying rules is straightfor-
ward. Furthermore, high computational efficiency allows us to experiment with
rule templates without need of dedicated computational resources. The tagger
could be successfully run on any modern computer.

It would also be possible to adapt the rule system such that we allow multiple
tags to be attached to a single segment, and the rules are used to attach or detach
tags.

Another idea is to incorporate a Brill tagger as one of the classifiers in a hybrid
tagger, like TaKIPI. It may further improve its accuracy, especially that the Brill
tagger may generate correct tags in places, where other taggers frequently mistags
segments. Of course, the inverse is true as well.
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It is also the case, that taggers based on Brill’s approach, when used in hybrid
setups — in one stage of a linear topology hybrid tagger — may automatically
identify and correct weaknesses specific for preceding taggers.
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